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We study the motion of a point particle along the bonds of a two-dimensional 
random lattice, whose sites are randomly occupied with right and left rotators, 
which scatter the particle according to deterministic scattering rules. We con- 
sider both a Poisson (PRL) and a vectorized random lattice (VRL) and fixed 
as well as flipping scatterers. On  both lattices, Ibr fixed scatterers and equal 
concentrations of right and left rotators the same anomalous  diffusion of the 
particle is obtained as before for the triangular lattice, where the mean square 
displacement is ~t,  the diffusion process non-Gaussian,  and the particle 
trajectories exhibit scaling behavior as at a percolation threshold. For unequal 
concentrations the particle is trapped exponentially rapidly. This system can 
be considered as an extreme case of the Lorentz lattice gases on regular lattices 
discussed before or as an example of the motion of a particle along cracks or 
(grain or cellular) boundaries on a two-dimensional surface. 

KEY WORDS:  Random lattice; difl'usion: critical behavior; hyperscaling; 
propagation; cellular boundaries. 

1. I N T R O D U C T I O N  

Random lattices have been considered for a number of years to discretize 
a system without introducing the spatial anisotropy associated with regular 
lattices. They have figured in a large number of applications including 
quantum field theory /~  grain mosaics, ~21 and also foams. 13~ We will confine 
ourselves in this paper to two-dimensional lattices. 

On the other hand, they also represent an extreme case for the motion 
of a particle on a regular lattice as in the (two-dimensional) Lorentz lattice 
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gas cellular automata  (LLGCA)  studied before 14-71 in that a maximum 
homogeneity of the possible velocity directions of the particle occurs, 
closest to those found in a continuous gas. In LLGCA a point particle 
moves on a lattice whose sites are (partially or fully) randomly occupied by 
scatterers which deflect the velocity of the moving particle according to 
given deterministic scattering rules. In this paper, we will consider LLGCA 
on two random lattices, with left or right rotators as scatterers, which 
deflect the particle velocity in a direction which makes the largest possible 
angle with its incoming velocity (Fig. 1). This was done in order to make 
a comparison with the regular triangular lattice possible, where a similar 
choice was made. 

The motion of the particle in these models can be considered as 
explorations of the motion of a particle along randomly distributed lines or 
grooves on a surface such as cracks or cellular boundaries, or alternatively 
as the behavior of LLGCA on a random lattice. The scattering rules we 
choose enable a direct comparison with the behavior of previous LLGCA 
on regular lattices; although indicative, they may not be the most natural 
ones for the motion along cracks or boundaries. We include some results 
for probabilistic scattering rules corresponding to our rotator  model on a 

Fig. 1. 
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Scattering rules for a rotator on a random lattice ( Figs. 5a-5b): (a) right rotator ( �9 ): 
(b) left rotator (�9 (c) probabilistic scattering rule (A).41-,i 



Diffusion on Random Lattices 235 

fully occupied random lattice. Then the particle has probability ?L to turn 
to its left over the largest possible scattering angle and probability )'R to 
turn to its right over the largest possible scattering angle. Since the particle 
has to turn either to the left or to the right, YL + ?R = 1. In our computer  
simulations we chose ?L = ?R = 1/2 (Fig. lc). 

In Section 2 we discuss the construction of the two random lattices 
considered here: the Poisson random lattice (PRL) and the vectorized 
random lattice (VRL). In Section 3 we specify the two kinds of (rotator) 
scattering rules for which the motion of the particle over the random 
lattices is studied: fixed and flipping rotators; while Section 4 specifies the 
computer  simulations and the physical quantities determined in them. 
Section 5 discusses the results obtained for fixed rotators, Section 6 those 
for flipping rotators. Section 7 comments  on some of the results obtained. 

2. C O N S T R U C T I O N  OF R A N D O M  L A T T I C E S  

An extensively used type of random lattice is the Delaunay random 
lattice,~t. 8~ which is an isotropic triangulation of a plane based on a given 
set of N random points in the plane. The Delaunay random lattice is easiest 
defined as the dual lattice to the Voronoi tessellation of the plane. The 
Voronoi construction or tessellation for a given set of points is defined as 
follows (Fig. 2): for all N random points we determine for each point (e.g. 
point P in Fig. 2) the associated cell consisting of the region of the plane 
nearer to this point than to any other point (GHIJK in Fig. 2). Whenever 
two cells share an edge they are considered as neighbors (e.g., the edge JK 
of the cells associated with P and A). By drawing a link (PA) between the 
two points associated with these cells one obtains a triangulation of the 
plane which is called the Delaunay lattice. This can be considered as a dual 
transformation from the Voronoi tessellation to the Delaunay random 
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F J 

/ 

�9 / / /  

Fig. 2. Dual transformation between Delaunay random lattice Ithick solid lines) and 
Voronoi tessellation Icells) (thin solid lines). Points A ..... F, P are the Delaunay random 
lattice sites: G, H,..., K belong to the Voronoi tessellation. 
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lattice in the sense that points of the Delaunay lattice (e.g., P) correspond 
to cells (e.g., GHIJK) ,  links (e.g., PA) to cell edges (e.g., JK),  and triangles 
(e.g., PAC) to vertices (e.g., K) of the Voronoi tessellation, respectively. 

We will consider two Delaunay random lattices each constructed by 
connecting randomly distributed points on the plane with bonds (links), 
leading to a triangulation of the plane. Either we distribute the points ran- 
domly over the infinite plane, as described above, in which case a Poisson 
random lattice (PRL) (since the number of lattice points in a given volume 
is then a random variable with a Poisson distribution), introduced by 
Christ et al. ~l~ is obtained, or we first cover the plane with a regular square 
lattice and then distribute points randomly and homogeneously inside each 
square, such that each square contains only one point (Fig. 3a). In this case 
a vectorizable random lattice (VRL), introduced by Moukarzel and 
Herrmann, ~9~ is obtained, which allows a vectorizable (i.e., parallel) com- 
puter program for obtaining relevant properties of the lattice. 

�9 C ~ 

i 

(a) 

Fig. 3. (a) The division into squares in order to obtain tile VRL. The points �9 are ran- 
domly and homogeneously distributed inside each square of a square reference lattice. Also 
shown is the initial triangle ABC together with the 36-square neighborhood (thick solid line) 
of the initial point A; (b) probabilities for a point (e.g., A) to be connected to another point 
in the 36-square neighborhood; see ref. 9. 



Dif fus ion on Random Latt ices 237 

-5 -5 -5 
4.12xi0 1.45x10 4.12x10 

-5 -2 -2 -2 -5 
8.06x 10 1.56x10 4,06x10 1,56x10 8.06x I0 

-5 -2 -I I -I -2 -5 
4.12x10 1.56x10 4,93x10 9.36x10 4.93x10 1,56x10 4.12x10 

-5 -2 -I -I -2 -5 
1.45xl0 4.06xl0 9.36x10 �9 A 9.36x10 4.06x10 1.45x10 

-5 -2 -I -I -I -2 -5 
4.12x10 1,56x10 4.93x10 9.36x10 4.93x10 1.56x10 4.12x10 

-5 -2 -2 -2 -5 
K06xl0 1.56x10 4.06x10 1.56x10 8.06xl0 

-5 -5 -5 
4.12xl0 1.45xl0 4.12x10 

(b) 

Fig. 3. (cont inued)  

2.1. Construction of PRL 

We first describe a computer algorithm for generating a Delaunay 
random lattice consisting of points with uniformly distributed x and ), 
coordinates. We start by putting points randomly in the plane. Then we 
choose an arbitrary point A (Fig. 4) and search out its nearest neighbor B. 
The two points Aand B are linked, We then proceed as follows in order to 
find a triangle having this link as one of its sides: we note that each link 
can belong to two triangles, one on each side of the link, and that if we are 
given the link with its two endpoints and a side is chosen, it is 
straightforward to locate the third point of the triangle on that side. A way 
to do this is shown in Fig. 4. A circle is drawn through the endpoints of the 
link AB, its center being the link's midpoint M~ (there is no point inside 
this circle, since B is the nearest neighbor of A). One then moves the center 
of the circle with points ,4 and B on the circle by a small amount, depen- 
dent on the density of points, in the direction perpendicular to ,4B, where 
the next neighbor could be located, until one or more points are inside the 
circle with c e n t e r  M 3 (e.g., C~ and C2). One chooses then the point (Ct) 
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D i r e c t i o ~ f ~  

Perpendicular - ~  
Bisector of Line AB 

Fig. 4. Finding a new point in order to construct a new triangle starting from one link AB. 
Here M I, M 2, and M 3 are centers of the circles located on one side of the perpendicular 
bisector of AB. Triangle ABC~ is the first triangle: C 2 is a point of the random lattice which 
will be connected later. 

giving rise to the circle with the smallest radius (i.e., with center M2). In 
this way, we obtain the first triangle ABCj. 

The above procedure can then be repeated to link up the entire lattice. 
Starting with the triangle that has been completed, there are three links. 
We may now erect triangles on the other side of each link in the same way 
as described above. In this way we proceed from links to triangles and from 
triangles to new links. To avoid repetition, we keep a list of"ac t ive"  links, 
i.e., those for which only one triangle has been found. When a new triangle 
is erected; we put each new link on the "active" list, unless it was already 
there in which case we remove it (which means that we already found the 
third point on both sides of that link). We also remove the old link from 
the active list. Each active link carries a tag that shows which side the 
known triangle is on. We erect triangles only on the "unknown" side of 
active links. When the active list is empty, all the links and triangles have 
been found and the Delaunay random lattice has been constructed. A part  
of a PRL is shown in Fig. 5a. 

From the numerical point of view this approach is disadvantageous 
because there are no regularities of the lattice which can be used to 
substantially improve the performance of the simulation. This prevents the 
performance of large-scale simulations on the PRL. The reason is of course 
the lack of parallelism due to the fact that each lattice site has different charac- 
teristics, such as the number and relative location of the nearest neighbors of 
a given site. In fact, for the PRL the number of nearest neighbors of a site is 
not even bounded, because any spatial distribution of points is in principle 
possible. So, in order to introduce some regularities in the neighborhoods of 
the sites in the sense that, given any site, one has a simple rule to know which 
are its relevant neighbors, we consider also the VRL. 
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Fig. 5. Part of(a) a PRL: (b) a VRL. 

2.2.  C o n s t r u c t i o n  of  V R L  

The construction we describe closely follows the procedure described 
in ref. 9. We first define a regular lattice (here a square lattice), which we 
call the reference lattice. Next we randomly pick in each square a point 
with uniform distribution (Fig. 3a). These will be the sites of  our VRL. The 
spatial distribution of  these points is homogeneous ,  i.e., the probability to 
find a point at any position in the lattice is constant. 
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Unlike for the PRL, where a point can in principle be connected to 
any other point, here each point can only be connected to points in a 
36-square neighborhood, as shown in Fig. 3a. So if a point belongs to a tri- 
angle, the other two points must be in two of the squares of this 
neighborhood. For, if one of these two points is outside this neighborhood, 
the circle defined by the three points so chosen will include at least one 
point in~'ide the 36-square neighborhood. Therefore, to find a triangle one 
only has to search for neighboring points in this restricted area. An upper 
limit for the distance two neighboring points can have is (42+22)1/2= 
(20) ~/2 ~4.472, as can be seen in Fig. 3a. 

The last step is to find the third point of the triangle: the probability 
to find this point is not equal for all squares in the neighborhood of a given 
square, but is much smaller for the outer squares. In Fig. 3b the numeri- 
cally determined probabilities for the center point to be connected to 
another to point in this neighborhood are shown. ~9~ So we begin the search 
for the third point in those squares which have the highest probability 
(Figs. 3a, 3b) and then going outward to the squares with lower proba- 
bility, possibly cutting off the search at outer squares with probabilities 
< 10-3. A part of a VRL is shown in Fig. 5b. 

2.3. Isot ropy 

The probability that a site located at the origin has a neighbor at the 
point (r, 0) in polar coordinates provides a measure for isotropy. If the 
local properties of the lattice were fully isotropic, no 0 dependence would 
be obtained. This is indeed so for the PRL, but for the VRL, the proba- 
bility shows some mild anisotropy. ~9~ This is of course not surprising, since 
the reference lattice was anisotropic; so even though the distribution of 
single lattice points is itself homogeneous in space, the probability for pairs 
of lattice points has a weak anisotropic bias. ~9~ 

3. R O T A T O R  M O D E L  

Since straight lines may pass through some but not all lattice sites on 
the random lattice, only the case of a fully occupied random lattice whose 
sites are all occupied by scatterers, i.e., with concentration of scatterers 
C =  1, has been considered, since otherwise a model with two different 
types of scattering rules would have to be introduced. We chose the time 
s t ep= the  particle speed = 1. However, unlike the regular lattices con- 
sidered previously, the lattice distances on a random lattice differ from 
lattice site to lattice site. Therefore, during one time step, there is no colli- 
sion with a scatterer if the lattice distance is longer than 1 and there is 
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one or more than one collision with a scatterer if the lattice distance is 
shorter than 1. This causes no difference, however, in the diffusive behavior. 
Choosing, e.g., variable particle speeds so that the particle would always 
travel between two adjacent lattice sites in a time step would not change 
our results. 

In our rotator model, the particle turns to its left (right) over the 
largest available angle between the incoming and outgoing velocity direc- 
tions (Figs. l a and l b). The right and left rotators are randomly distributed 
over the sites of the random lattice and the fraction of lattice sites occupied 
by right (left) rotators will be denoted by CR(CL), SO that C =  CR + CL = 1. 

An analytical treatment of the motion of a particle on the random 
lattice occupied by rotators is very difficult. Not only is it not obvious how 
to write down the microscopic equations of motion for the moving particle, 
but, in addition, even if one did, the equations of motion could essentially 
only conveniently be solved at present in the Boltzmann approximation, 
which does not give meaningful results for this nondilute deterministic 
lattice gasJ ~ Therefore we will only describe the computer program we 
used to study numerically the diffusive motion of the particle through the 
scatterers over the lattice. Before we do so, we note that we consider two 
kinds of (right and left) rotator models: fixed and flipping. Fixed rotators 
are not only fixed in position during the entire motion of the particle, but 
also as to their (right or left scattering) state, while flipping rotators only 
have fixed positions, but change (flip) in state instantaneously from right 
to left rotator or vice versa, after a collision with the particle has occurred. 

We remark that for fixed scatterers the diffusive behavior of one 
moving particle or of many simultaneously moving but mutually non- 
interacting particles is the same, since the particles move through the 
scatterers independently of each other. However, this is not true for the 
flipping scatterers, where the change in character of the scatterer after a 
collision with a particle introduces an indirect interaction between the 
particles via the scatterers and vice versa. 

4. C O M P U T E R  S I M U L A T I O N S  

A similar computer algorithm is used here for the two random lattices 
as was used before for the quasi-lattice, 17~ except that strictly periodic 
boundary conditions could be employed here. The basic unit cell is a 
square containing 10,000 lattice sites and the periodic boundary conditions 
are defined as follows: if no more points can be found on one side of a link 
because one is close to a boundary of the unit cell, the points (x, y) inside 
the unit cell from the opposite boundary are moved by the transformation 
(x _+ 100, y) or (x, y-I- 100) outside the unit cell to generate the next cell of 
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the checkerboard which will ultimately form the random lattice by repeti- 
tion of this procedure. 

We are interested in the diffusive behavior of the moving particle due 
to the scatterers. To that end, we studied the following quantities: 

1. The mean square displacement A ( t ) - ( l r ( t ) ]  2) =(r2(l)), where 
r(t) and r(t) are the displacement and distance of the particle position at 
time t from its initial position at time t = 0 ,  respectively, with r ( t ) =  Ir(t)l 
and the average ( . )  taken over all random configurations of the scatterers 
over the lattice. 

2. From zl(t), we can define a time-dependent diffusion coefficient 
D(t) = A(t)/4t. If D(t) approaches a finite limit when t--* Go, this limit is the 
diffusion coefficient constant D in the normal sense. 

3. The kurtosis K ( t ) = ( x 4 ( t ) ) / ( x 2 ( t ) ) 2 - 3 ,  where x ( t ) i s  the dis- 
placement along the x axis. Since for Gaussian diffusion K(t)=0, K( t )SO 
indicates non-Gaussian diffusion. An even more detailed description of the 
diffusion process is given by the following: 

4. The probability distribution function P(r, t), which gives the prob- 
ability to find a particle at position r at time t if the particle is initially at 
r = 0 when t = 0. In our computer simulations, we actually determine the 
radial probability distribution function 

2n 2n 

P(r, t) = r ~ P(r, t) = r ~ P(r(r, 0), t) 
0 = 0  0 = 0  

which is the probability to find a particle at i" at t if the particle is initially 
at r = 0 when t = O, where r and 0 are the polar coordinates of r. 

5. FIXED ROTATORS 

The simulation results indicate for both random lattices an absence of 
diffusion for all unequal concentrations CR V = CL of right and left rotators, 
since all particles then get trapped after a finite number of time steps. Thus 
the mean square displacement A(t) is bounded, so that A ( t ) ~  const and 
D(t) goes to zero as 1/t (Figs. 6a, 6b). Also, the radial probability distribu- 
tion function P(r, t) no longer appears to change after t ~ 2 I~ (Figs. 61", 6g). 
For  equal concentrations Cn = CL = 1/2 of right and left rotators, on the 
other hand, A( t )~  t, so that D ( t ) ~  const and a time independent of the 
diffusion coefficient D can be defined (Figs. 6a, 6b). However, the kurtosis 
K(t) does not go to zero (Fig. 6c) and the radial probability distribution 
P(r, t) does not correspond to that of a Gaussian probability distribution 
(Figs. 6d-6e), a diffusive behavior called anomalous diffusion before, t4-7" t21 
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In this case, a critical or scaling behavior of the particle trajectories 
occurs characterized by exponents which are identical to those found for 
two-dimensional percolation clusters, without there being any connection 
here of the particle trajectories with such clusters, whose existence on 
random lattices is even less clear than on not fully occupied regular 
lattices. 14-7) 

The scaling behavior at CR = CL = 1/2 on the random lattice is iden- 
tical to that found for the rotator model on the triangular lattice and the 
absence of a connection with an associated percolation problem occurred 
there also for Cn = CL when C <  1 (as opposed to C =  1 here.) 

Thus the number of particle trajectories still open (closed) at time t 
decreases (increases) as t-~/7 for Cn = CL = 1/2 (Fig. 7a), indicating that all 
trajectories will close eventually and the particle will move in a periodic 
orbit on the lattice. For  Cn :/: CL ~ 1/2, however, the number of open 
(closed) orbits decreases (increases) exponentially in time. 

The critical behavior at Cn = Cc = 1/2 exhibits the same hyperscaling 
relation between the exponent r associated with the lower cumulative prob- 
ability Po(t) for the decay of open trajectories with time, l-t/7~/2-r and 
the same fractal dimension df derived from the mean square displacement 
for such orbits, Ao(t)~t 2/al, as on the triangular lattice: 14-7~ r - 1  =2~dr 
( r =  15/7, d r=  7/4) (Fig. 7). 

The similarity with the triangular lattice may be related to the fact that 
the average coordination number on the random lattice is 6, the same as 



Di f fus ion  on R a n d o m  Lat t ices  247 

2 1 0 ~  

10000 ; 
X 

Q 
X I 

D 
0 

0 
+ o 

+ 
G 

+ 

r 
O 

+ 

x o 

x 

I I I I I i i 116 118 
2 4 6 8 4 1  12 14 20 

(a) 

o 1000 

10000 -- 

100 

! ! 
~ ' x ,  

B 
x 

8 
8 , 

O t 

x []  
0 
+ o 

r 
+ o 

D 0 

x []  + 

13 

x 

x 

2 4 6 8 I0~1 1 1 16 18 20 

(b) 

Fig. 7. The number of open orbits No(t) out of 10,000 trajectories as a function of t on a 
logl0-1og, scale for the fixed rotator model for CL= CR=0.5 ( 0 )  [the slope approaches 
~ - 1 / ( 7 1 o g 2 1 0 )  ], CL=0.51, CR=0.49 ( + ) ,  CL=0.52, CR=0.48 (ID), and CL=0.6, 
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sponding contributions to the diffusion coefficient from open orbits Po(t)Ao(t)/t as a function 
of t on a logl0-1og, scale for CL = CR = 0.5 ( O ) (the slope approaches a constant), CL = 0.51, 
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for the triangular lattice, and also that the random lattice is constructed as 
a triangulation of the plane. 

The absence of effects due to the finite size of our basic cell and the 
efficacy of the periodic boundary conditions was confirmed by the virtually 
identical diffusive behavior found for a basic cell of 2500 instead of 10,000 
lattice sites. However, the basic cell may well still be too small to discover 
possible logarithmic corrections, etc., to our results, c~~ 

6. FLIPPING ROTATORS 

As on the not fully occupied triangular lattice for 0 < C < 1 for flipping 
rotators, t4-7'~2~ the diffusive behavior is quasinormal on the PRL; it is, 
however, normal on the VRL. 

6.1, On the PRL 

For the PRL, although the diffusion coefficient and the kurtosis look 
like those for Gaussian diffusion (Figs. 8a, 8b), the radial distribution func- 
tion P(r, t) clearly exhibits non-Gaussian behavior (Fig. 8c), since the 
points near the origin are due to periodic orbits. However, as the fraction 
of closed orbits is very small, the diffusion coefficient and kurtosis look like 
those for normal diffusion, so that we call this behavior quasinormal. A few 
examples of periodic orbits are shown in Figs. 9a-9c. Unlike on the tri- 
angular lattice, where only periodic orbits for t < 26 are found on the com- 
puter (Fig. 10a), there are much longer periodic orbits here (Figs. 9a-9c), 
yet the fraction of all periodic orbits is even smaller than on the triangular 
lattice; cf. the peak value (for periodic orbits) of 0.011 on the triangular 
lattice (Fig. 10b) with 0.001 on the PRL (Fig. 8c). Thus the overwhelming 
majority of trajectories remain open. 

Since the random lattice is constructed as a triangulation of a plane, 
the motion of the particle on the fully occupied random lattice is similar to 
that on the triangular lattice. Now for the flipping rotator model on the 
fully occupied triangular lattice the particle always propagates to infinity, 
no matter what the concentrations CL and Cn are. ~4-7" ~21 On the random 
lattice the particle trajectories for the flipping rotator model have a similar 
propagating behavior as on the triangular lattice (Figs. l la, l lb).  How- 
ever, because of the irregularity of the random lattice, the "propagation" in 
a particular direction cannot last long before another "propagation" starts 
in another direction, leading, after many such propagation direction 
changes to a randomized motion of the particle on the lattice. Thus, in 
spite of short term "propagations," the moving particle exhibits on the long 
time scale normal diffusion (except for a very small probability to make a 
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Fig. 8. (a) Diffusion coefficient D(t) as a function of t on a logt0-1og~o scale for the flipping 
rotator model for CL = C n = 0 . 5  (approaching a constant)  on the PRL ( ~ )  and VRL ( + ) ;  
(b) corresponding kurtosis on the PRL (O)  and V RL ( + ) ;  corresponding /~(r, t) at t = 219 
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periodic orbit). This is as on the partially occupied triangular lattice, where 
the presence of randomly placed unoccupied lattice sites leads to a similar 
quasinormal diffusive behavior, t4-7~ Since the particle spends a lot of time 
moving back and forth during each short term "propagation," (see Figs. 
l l a - l l d ) ,  the diffusion coefficient is very small compared to that on the 
partially occupied triangular lattice (Fig. 10c), where this does not occur. 

We note that even for the periodic orbits in Figs. 9a and 9b (not in 
Fig. 9c, which could be the smallest one, with only seven lattice sites), the 
particle orbit is composed of short term "propagations," except that the 
particle comes back to the origin with the same velocity and configuration 
of rotators as the initial one, leading to a periodic particle orbit. 

6.2.  On  t h e  V R L  

For the VRL, no closed orbits have been found so far. The diffusion 
appears to be Gaussian, i.e., A(t )~ t ,  so that D ( t ) ~ c o n s t  and K(t )~O 
and P(r, t) is consistent with a Gaussian distribution (Figs. 8b-8d). 

We note that the diffusion coefficient for the VRL is about three times 
larger than that of the PRL (Fig. 8a). We believe that this is due to (1) the 
structure of the VRL, which is more regular than that of the PRL, and 
leads to relatively longer "propagations" for the particle on the VRL than 
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Fig. 10. (a) Fraction of periodic orbits for tile flipping rotator model on the triangular lattice 
as a function of log_~ t for different concentrations of rotators for CL = CR; from top to bot- 
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(b) corresponding P(r, t) for C =0 .85  and C L =  C R at t=2z3; solid lille is -P for the corre- 
sponding Gaussian distribution (note the few points representing periodic orbits near the 
origin); (c) comparison of the diffusion coefficient D as a function of C for CL = CR for the 
flipping rotator model on the triangular lattice ( ~ ) ,  which goes to infinity when the concen- 
tration C---, 0 or 1: on tile PR L for CL = Cg = 0.5 ( C = I ) ( + ) with value ~ 0.11, on the V R L 
for Ct .=  CR=0.5  (I-q) with value ~ 0.27, and tile diffusion coefficient for a probabilistic 
model based on tile rotator model on the PRL (• and VRL ( A )  (these two are 
indistinguishable) for CL = CR = 0.5 (• with value ~0.038. 
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on the PRL (Figs. 1 la-1 ld); and (2) the fact that there are no closed orbits 
on the VRL (Fig. 8d). 

It is obvious that the first reason is dominant, since the number of 
closed orbits on the PRL is very small. 

6.3. Compar ison  w i t h  the  Probabi l is t ic  Sca t te r ing  Rules 

The quasinormal and normal diffusive behavior of the flipping rotator 
models on the PRL and VRL make a comparison with models with 
probabilistic scattering rules possible, since the computer simulation results 
indicate that the diffusive behavior of a particle moving through scatterers 
with probabilistic scattering rules, is always Gaussian. Because of the 
"propagations" that take place on both the PRL and the VRL, the diffu- 
sion coefficients on these lattices are larger than for a probabilistic model, 
which corresponds to the rotator model for CL = Cn = 1/2, i.e., for a model 
with equal probability for the particle velocity direction to scatter over the 
largest angle to its right or its left at a given lattice site (Figs. lc, 12a, 12b). 
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(d) VRL. 
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7. DISCUSSION 

We conclude with a number of remarks. 

I. The random lattices exhibit the same kinds of diffusive behavior as 
the regular lattices studied beforeJ 4-7~ Although the behavior can naturally 
be compared with that on a triangular lattice, it is also similar to that 
found for the square ~4-7) and honeycomb ~4-7) lattices for particular scat- 
tering rules and scatterer concentrations. 

2. The most striking difference between the diffusive behavior on the 
two random lattices is for flipping rotators, where for the VRL no closed 
particle orbits have been found, while for the PRL a very small but finite 
number was seen. This might well be due to the slightly more regular struc- 
ture of the VRL as compared to the PRL, which allows longer propaga- 
tions than on the PRL (Figs. l lc and l ld) and also leads to a larger 
diffusion coefficient on the VRL than on the PRL (Fig. 8a). The dif- 
ference in the particle motion on the PRL and VRL when deterministic 
or probabilistic scattering rules are used is shown in Figs. 11a, 1 lb and 12c, 
and 12d. One notices that the probabilistic motion gives rise to more 
densely space filling trajectories, because of the absence of propagation. 

3. In so far as two-dimensional random lattice structures occur in 
nature or technology, it might be of interest to investigate other random 
lattices, as well as other scattering rules than those considered here, which 
were dictated to allow a comparison with those employed before on regular 
lattices. Such an investigation would address the question whether the same 
universality in scaling behavior of the trajectories observed before for 
regular lattices/4-7~ also obtains for random lattices in general. In par- 
ticular, one could wonder whether such behavior is always found for an 
equal concentration of right and left rotators, independently of the nature 
of the random lattice or the scattering rule (e.g., whether scattering takes 
place over the largest or the smallest angle with the incoming velocity). 

The fundamental difference between the diffusive behavior for 
probabilistic and deterministic scattering rules should, however, be kept in 
mind. For, while the first appears always to lead to normal, Gaussian, dif- 
fusion, the second exhibits a wide variety of behavior ranging from particle 
propagation to quick particle trapping in closed orbits. 14-71 
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